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The gravitational interchange is analyzed using three
different extended MHD models to illustrate the different
behavior present in each of these models.

We consider a single temperature extended MHD model that
includes ion gyroviscosity and a two-fluid Ohm’s Law.

Two partial models are also considered.

The gyroviscous model includes gyroviscosity with a MHD Ohm’s
law.
The two-fluid model uses a two-fluid Ohm’ law but neglects
gyroviscosity.

The differences between these models highlights the importance of
using a self-consistent model.
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The gravitational interchange (g-mode) is useful for
studying interchange dynamics in simplified geometry.

A fictitious gravity is introduced to represent magnetic curvature.

Interchange force balance: ∇
(
µ0P + B2

2

)
= ~B · ∇~B

g-mode force balance : ∇
(
µ0P + B2

2

)
= ρ~g

ρ′g < 0 corresponds to “bad curvature.”

Extended MHD introduces drifts which can stabilize interchange
modes [Roberts and Taylor PRL 1962].

The g-mode is a simple model used to study the dynamics of this
stabilization.
The g-mode is a useful benchmark for extended MHD codes
[Schnack et al. PoP 2006].

We analyze the extended MHD g-mode dispersion relation of Zhu et
al. [Zhu et al. PRL 2008].

Zhu analyzes the relation in the simplified model that only includes
gyroviscosity.
Our analysis includes two-fluid effects with and without gyroviscosity.
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The extended MHD model includes ion gyroviscosity and
two-fluid corrections to Ohm’s law.

∂n

∂t
+∇ · (n~v) = 0

ρ

(
∂~v

∂t
+ ~v · ∇~v

)
= ~J × ~B −∇p − δ∇ · ~~πgv

~~πgv =
pi

4Ωci

[
b̂ × ~~W ·

(
~~I + 3b̂b̂

)
−
(
~~I + 3b̂b̂

)
· ~~W × b̂

]
~~W = ∇~v +∇~vT − 2

3
~~I∇ · ~v

∂p

∂t
+ ~v · ∇p = −γp∇ · v

∂~B

∂t
= −∇×

[
−~v × ~B +

λ

ne

(
~J × ~B −∇pe

)]

Separate electron and ion temperature evolution is not considered.

δ and λ are markers used to track gyroviscous and two-fluid effects.
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Zhu et al. derive an extended MHD dispersion relation for
the local g-mode assuming a static equilibrium.

~u0 = 0

~B0 = Bz êz

d

dx

(
p +

B2

2µ0

)
= ρ~g · êx

ne~E = ∇pi − ρ~g

Equilibrium quantities vary in the x direction.

Perturbed quantities vary in x and y .

Local interchange ordering is used with kyLn � 1 and ũy � ũx .
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The dispersion relation is normalized such that only one
parameter, G , depends on ky/Ω.

Symbol Normalized Quantity Physical Quantity Normalization

X = ω
ΓMHD

Mode frequency ω ΓMHD

G =
ωg

ΓMHD
Gravitational drift ωg = − ky

Ω g ΓMHD

P =
ωp

ωg
Ion diamagnetic drift ωp =

ky
Ω

p′i
min

ωg

N = ωn

ωg
Ion density drift ωn =

ky
Ω

pin
′

min2 ωg

R2G 2 = k2
y r

2
i Ion gyroradius ky ri =

ky
Ω

√
pi
nmi

G

ΓMHD =
√
− n′

n g is the 0− β MHD growth rate.

Scaling G is equivalent to scaling ky for a fixed equilibrium.

The normalized gyroradius is not a free parameter: R2 = N.

The extended MHD model is physically valid in the limit RG � 1.
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The extended MHD g-mode is characterized by a cubic
dispersion relation.

(A0 + A2)X 3 + (X∗1 + X∗3)X 2 +
(
Γ2

0 + Γ2
2

)
X + D1 = 0

(A0 + A2) = 1 + γβ + δ2 τG
2R2

4
β

X∗1 = G (δ [(1 + γβ) (1 + β)P + (2 + γβ) τβ] + λ [1 + P − γN])

X∗3 = −δ2λG 3 R
2

4
N

Γ2
0 = 1 + γβ +

τβ

N

Γ2
2 = δλG 2 [(1 + β) (P + 1)P − ((1 + γβτ) + (1 + β) γP)N + (1 + P) τβ]

D1 = λG (P − γN)

τp = pi and β = µ0p/B
2

The red terms arise due to gyroviscosity, the blue terms arise due to
two-fluid effects, and the magenta terms arise due to an interaction
between the two effects.
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The gyroviscous dispersion relation reduces to a quadratic.

(
AX 2 + X∗X + Γ2

)
X = 0

A = 1 + γβ +
τG 2R2

4
β

X∗ = G [(1 + γβ) (1 + β)P + (2 + γβ) τβ]

Γ2 = 1 + γβ +
τβ

N

This dispersion relation is obtained by setting δ = 1 and λ = 0 in
the full extended MHD dispersion relation.

The two nontrivial solutions are X = −X∗
2A

(
1∓

√
1− 4AΓ2

X 2
∗

)
.

Complete stabilization is not always possible when β 6= 0 and
P < N.

X scales as G−1 in the limit |G | � 1.
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P ≥ N is a sufficient condition for complete gyroviscous
stabilization.
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The unstable g-mode (green) and its damped counter part (blue)
have the same real frequency.

The two branches have distinct real frequencies after stabilization.

Both waves asymptote to 0 for G > 60 (not shown).
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Other regimes are not stabilized by FLR effects in the
gyroviscous model!
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Both branches of the g-mode (blue and green) have the same real
frequency for all G .

The real and imaginary frequencies asymptote to zero at large G .
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The two-fluid dispersion relation is represented by a two
parameter model.

X 3 + G (1 + H)X 2 + X + GH = 0

H = P − γN

The two-fluid model is obtained by setting δ = 0, λ = 1, and β = 0
in the full extended MHD dispersion relation.

Setting β = 0 does not change the qualitative behavior of the model,
since none of the two-fluid terms containing β depend on G .

The modified ion diamagnetic frequency H is related to the ITG

stability parameter ηi = nT ′

n′T .

H = N (ηi − (γ − 1))
H > 0 implies that ηi >

2
3

for γ = 5
3
.

The term GH introduces a third nontrivial mode.

E.C. Howell, C.R. Sovinec Extended MHD Analysis of the Gravitational Interchange.



Analysis of the two-fluid model identifies the asymptotic
stability boundaries.

Stability requires that G 2 (1 + H)2 ≥ 3.

H = −1 is always unstable.

Two-fluid effects are stabilizing in the limit |G | � 1 when H > − 1
4 .

X1 = −GH is an ion drift wave.

X2,3 = −G
2
± i
(

1− G2

8
(1 + 4H)

)
are the branches of the g-mode.

The drift wave and the branches of the g-mode propagate in the
same direction for H > 0.

The g-mode is stable in the limit |G | � 1 when −1 < H ≤ 0.

Two of the modes are independent of G : X1,2 = ±
√
−H
1+H

.

The third mode is an ion drift wave: X3 = −G (1 + H).
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The two-fluid model yields a second instability for H > 0.
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Instability occurs when the ion drift wave (blue) intersects the low
frequency branch of the stabilized g-mode (green).

The drift wave and the g-mode drift in opposite directions for H < 0.

There region of stability disappears for H > 1
8 .
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The full model yields multiple unstable regions.

The g-mode exists at low G .

Stabilization of the g-mode is
weak when P < N.

A second instability exists at
intermediate G when P � γN.

Here the ion drift wave and
the g-mode propagate in the
same direction.

A third instability exists for
RG & 1 (top right corner).

Here the extended MHD
model is not valid.
The maximum growth rate
of this third mode exceeds
the MHD growth rate.
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Similar behavior is observed for
finite β.
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The second instability is due to an interaction between the
ion drift wave and the g-mode.
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The second instability occurs when the ion drift wave (red)
intersects the high frequency branch of the stabilized g-mode (blue).

The vertical line indicates RG = 0.1.
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A third unphysical instability occurs at G 2R2 & 1, where
extended MHD is not valid.
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This instability is due to an interaction between the two branches of
the previously stabilized mode.

It exists in codes that use the extended MHD model and may be
problematic due to its large growth rate.
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The analysis of the extended MHD g-mode reveals new
behavior.

The gyroviscous model is always more stable than MHD.

Zhu showed the complete stabilization is not always possible.
The growth rate asymptotes to zero even without complete
stabilization.

A 2-parameter model is used to analyze the two-fluid model.

Two-fluid effects introduce an ion drift wave.
The ion drift wave can interact with the low frequency branch of the
g-mode to produce a new instability.
Its growth rate is comparable to that of the MHD g-mode.

Multiple instabilities exist in the full model.

One instability is driven unstable by the interaction between the ion
drift wave and the high frequency branch of the g-mode.
A second instability exists in a regime where extended MHD is not
physically valid.

This instability may be a concern for extended MHD codes due to its
large growth rate.

E.C. Howell, C.R. Sovinec Extended MHD Analysis of the Gravitational Interchange.



Extra Slides

Extras

E.C. Howell, C.R. Sovinec Extended MHD Analysis of the Gravitational Interchange.



Zhu et al. show that complete gyroviscous stabilization is
not always possible.

Complete stabilization occurs when

G 2

[
[(1 + γsβ) (1 + β)P + (2 + γsβ) τβ]2

1 + γβ + τβ
N

− τR2β

]
≥ 4 (1 + γβ) .

Stabilization is impossible when the bracketed term is negative.

The bracketed term is positive for β = 0 or when the temperature
and density gradients are parallel (P ≥ N).

The growth rate asymptotes to zero even in cases where complete
stabilization is absent.

E.C. Howell, C.R. Sovinec Extended MHD Analysis of the Gravitational Interchange.



A second instability occurs in the two-fluid model when the
g-mode and the original ion drift wave propagate in the
same direction.

The second instability occurs for H > 0 or equivalently ηi > 2/3.

The mode grows at a rate comparable to the MHD growth rate.
The mode is destabilized by an interaction between an ion drift wave
and the low frequency branch of the g-mode.

This mode is not an ITG mode despite having many similarities.

ITG requires finite k‖, but here k‖ = 0.
ITG is a modified sound wave, but this mode is a modified g-mode.
ITG requires gyroviscosity, but this mode lacks gyroviscosity.

Two-fluid effects are destabilizing at small G when H < −1/4.

The two-fluid model is stable in the large G limit for −1 < H ≤ 0.
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Two-fluid effects lead to complete stability for
−1/4 < H ≤ 0.
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The ion drift wave (blue) and the branches of the g-mode (red and
green) propagate in opposite directions.

The branches of the g-mode become real waves after stabilization.
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For 0 < H < 1/8 there is only a window of stability.
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Two-fluid effects stabilize the g-mode at small G .

A region of stability occurs at intermediate G .

A second instability is present at large G .

Instability occurs when the ion drift wave (blue) intersects the low
frequency branch of the stabilized g-mode (green).
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The window of stability disappears for H = 1/8.
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Complete stabilization only occurs at G = ± 8
9

√
3.

The necessary stability condition G 2 (1 + H)2 ≥ 3 is satisfied exactly.

The drift wave intercepts both branches of the g-mode at the point
of stabilization.

Complete stabilization never occurs for H > 1
8 .
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The asymptotic analysis is also applied to the full extended
MHD model.

The three modes in the limit |G | � 1 are:

an ion drift wave X1 = −D1

Γ2
0

the g-mode: X2,3 = Y1 ± i
Γ2

0
A0

√
1 + 1

2Γ2
0

(3Y 2
1 A0 + 2X∗1Y1 + Γ2

2)

Y1 =
A0D1−X∗1Γ2

0

2Γ2
0A0

The limit |G | � 1 is dominated by a new instability.

X1 = GN
τβ

is an ion drift wave.

X2,3 = − Γ2
2

2X∗3

(
1± i

√
1− 4D1X∗3

Γ4
2

)
is a new instability driven by Γ2

2.

Stability is possible when G � 1.
Even if unstable, the growth rate decreases as G−1.

The asymptotic behavior can change if A2, Γ2
2, or X∗3 are 0.

In these cases complete stability is not always possible.
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